Home Zodiac Crystals Imaging two-dimensional generalized Wigner crystals

Imaging two-dimensional generalized Wigner crystals

8
0


  • 1.

    Wigner, E. On the interaction of electrons in metals. Phys. Rev. 46, 1002–1011 (1934).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 2.

    Goldman, V., Santos, M., Shayegan, M. & Cunningham, J. Evidence for two-dimentional quantum Wigner crystal. Phys. Rev. Lett. 65, 2189–2192 (1990).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 3.

    Jang, J., Hunt, B. M., Pfeiffer, L. N., West, K. W. & Ashoori, R. C. Sharp tunnelling resonance from the vibrations of an electronic Wigner crystal. Nat. Phys. 13, 340–344 (2017).

    CAS 
    Article 

    Google Scholar 

  • 4.

    Zhou, H., Polshyn, H., Taniguchi, T., Watanabe, K. & Young, A. Solids of quantum Hall skyrmions in graphene. Nat. Phys. 16, 154–158 (2020).

    CAS 
    Article 

    Google Scholar 

  • 5.

    Shapir, I. et al. Imaging the electronic Wigner crystal in one dimension. Science 364, 870–875 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 6.

    Regan, E. C. et al. Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices. Nature 579, 359–363 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 7.

    Jin, C. et al. Stripe phases in WSe2/WS2 moiré superlattices. Nat. Mater. 20, 940–944 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 8.

    Xu, Y. et al. Correlated insulating states at fractional fillings of moiré superlattices. Nature 587, 214–218 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 9.

    Huang, X. et al. Correlated insulating states at fractional fillings of the WS2/WSe2 moiré lattice. Nat. Phys. 17, 715–719 (2021).

    CAS 
    Article 

    Google Scholar 

  • 10.

    Deshpande, V. V. & Bockrath, M. The one-dimensional Wigner crystal in carbon nanotubes. Nat. Phys. 4, 314–318 (2008).

    CAS 
    Article 

    Google Scholar 

  • 11.

    Crandall, R. & Williams, R. Crystallization of electrons on the surface of liquid helium. Phys. Lett. A 34, 404–405 (1971).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 12.

    Williams, R., Crandall, R. & Willis, A. Surface states of electrons on liquid helium. Phys. Rev. Lett. 26, 7–9 (1971).

    Google Scholar 

  • 13.

    Grimes, C. & Adams, G. Evidence for a liquid-to-crystal phase transition in a classical, two-dimensional sheet of electrons. Phy. Rev. Lett. 42, 795–798 (1979).

    Article 

    Google Scholar 

  • 14.

    Williams, F. Collective aspects of charged-particle systems at helium interfaces. Surface Sci. 113, 371–388 (1982).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 15.

    Lam, P. K. & Girvin, S. Liquid-solid transition and the fractional quantum-Hall effect. Phy. Rev. B 30, 473–475 (1984).

    Article 

    Google Scholar 

  • 16.

    Levesque, D., Weis, J. & MacDonald, A. Crystallization of the incompressible quantum-fluid state of a two-dimensional electron gas in a strong magnetic field. Phys. Rev. B 30, 1056–1058 (1984).

    Article 

    Google Scholar 

  • 17.

    Tsui, D. C., Stormer, H. L. & Gossard, A. C. Two-dimensional magnetotransport in the extreme quantum limit. Phys. Rev. Lett.s 48, 1559–1562 (1982).

    Google Scholar 

  • 18.

    Klitzing, K. V., Dorda, G. & Pepper, M. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys. Rev. Lett. 45, 494–497 (1980).

    Article 

    Google Scholar 

  • 19.

    Pan, H., Wu, F. & Sarma, S. D. Quantum phase diagram of a moiré-Hubbard model. Phys. Rev. B 102, 201104 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 20.

    Hubbard, J. Generalized Wigner lattices in one dimension and some applications to tetracyanoquinodimethane (TCNQ) salts. Phys.l Rev. B 17, 494–505 (1978).

    Google Scholar 

  • 21.

    Li, H. et al. Imaging local discharge cascades for correlated electrons in WS2/WSe2 moiré superlattices. Nat. Phys. https://doi.org/10.1038/s41567-021-01324-x (2021).

  • 22.

    Li, H. et al. Imaging moiré flat bands in three-dimensional reconstructed WSe2/WS2 superlattices. Nat. Mater. 20, 945–950 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 23.

    Zhang, Y. et al. Giant phonon-induced conductance in scanning tunnelling spectroscopy of gate-tunable graphene. Nat. Phys. 4, 627–630 (2008).

    CAS 
    Article 

    Google Scholar 

  • 24.

    Jung, S. et al. Evolution of microscopic localization in graphene in a magnetic field from scattering resonances to quantum dots. Nat. Phys. 7, 245–251 (2011).

    CAS 
    Article 

    Google Scholar 

  • 25.

    Decker, R. et al. Local electronic properties of graphene on a BN substrate via scanning tunneling microscopy. Nano Lett. 11, 2291–2295 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 26.

    Wong, D. et al. Spatially resolving density-dependent screening around a single charged atom in graphene. Phys. Rev. B 95, 205419 (2017).

    ADS 
    Article 

    Google Scholar 

  • 27.

    Yang, F. et al. Experimental determination of the energy per particle in partially filled Landau levels. Phys. Rev. Lett. 126, 156802 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 28.

    Li, T. et al. Charge-order-enhanced capacitance in semiconductor moiré superlattices. Nat. Nanotechnol. https://doi.org/10.1038/s41565-021-00955-8 (2021).

  • 29.

    Tomarken, S. L. et al. Electronic compressibility of magic-angle graphene superlattices. Phys. Rev. Lett. 123, 046601 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 30.

    Zondiner, U. et al. Cascade of phase transitions and Dirac revivals in magic-angle graphene. Nature 582, 203–208 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 31.

    Pierce, A. T. et al. Unconventional sequence of correlated Chern insulators in magic-angle twisted bilayer graphene. Preprint at https://arxiv.org/abs/2101.04123 (2021).

  • 32.

    Pradhan, N. A., Liu, N., Silien, C. & Ho, W. Atomic scale conductance induced by single impurity charging. Phys. Rev. Lett. 94, 076801 (2005).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 33.

    Brar, V. W. et al. Gate-controlled ionization and screening of cobalt adatoms on a graphene surface. Nat. Phys. 7, 43–47 (2011).

    CAS 
    Article 

    Google Scholar 

  • 34.

    Wong, D. et al. Characterization and manipulation of individual defects in insulating hexagonal boron nitride using scanning tunnelling microscopy. Nat. Nanotechnol. 10, 949–953 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 35.

    Teichmann, K. et al. Controlled charge switching on a single donor with a scanning tunneling microscope. Phys. Rev. Lett. 101, 076103 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 36.

    Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 37.

    Schutte, W., De Boer, J. & Jellinek, F. Crystal structures of tungsten disulfide and diselenide. J. Solid State Chem. 70, 207–209 (1987).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 38.

    Kerelsky, A. et al. Maximized electron interactions at the magic angle in twisted bilayer graphene. Nature 572, 95–100 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 



  • Source link

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here